人工知能第一研究室

 
2017年度卒業研究

不随意的嚥下音の統計解析による機能評価の研究

平成29年10月10日に行われた卒業研究中間発表の内容です。

 

背景

一般的に老化に伴い嚥下障害を患う確率が高くなるが、軟らかめな食事が増えてきたことや、スマートフォンを見ながらの「ながら食事」を行う人が増えてきた今、嚥下障害を患っている若者も増加しつつある。

食事や水分摂取に関わる嚥下障害は患者のQOLの低下に繋がるだけでなく、日本人の死因の第3位である”肺炎”を引き起こす恐れがある。

嚥下障害の有無には、X線ビデオ透視検査などの機器が使われる検査があるが被爆の恐れを考慮し、近年では聴診器を患者の頚部に当てて嚥下音を聴取する聴診法でスクリーニング検査をする傾向が見られており、その精密化が求められている。

しかし、異常音の判定には熟練度が必要であり、患者の呼気が弱い、嚥下中のむせない誤嚥の場合は検出することが難しいとされている。

 

研究目的

簡単かつ侵襲性の無い計測方法で嚥下音の録音が収集が可能であり、嚥下音だけの情報から嚥下機能の状態を評価する指標の提案を行いたい。

 

嚥下・嚥下音とは

  • 嚥下

食塊を胃に送り込むために脳から命令を受けて舌や頚部の筋肉が複雑な運動を行うこと。

意識的に筋肉を動かしていることから”随意的な運動”となる。

http://www.swallow-web.com/engesyogai/

  • 嚥下音

嚥下運動の際に発生する音。

-Ⅰ音(20~100Hz)

喉頭蓋の閉鎖運動の際に発する音

-Ⅱ音(50~150Hz,400~750Hz)

食物が食道を通過する際に発生

-Ⅲ音(20~100Hz)

喉頭蓋の開放運動に際に発生

 

従来研究

「スペクトログラムと音声波形による嚥下音の特徴」(矢北、2015)

《目的》

スペクトログラムと音声波形から嚥下音の特徴を明らかにする

《結果》

・嚥下音の全体の時間は平均で2.5(s)

・Ⅰ・Ⅱ・Ⅲ音は同じような周波

数帯を持っている

他者間、個人内でも嚥下音のスペクトログラムに共通する特徴は無い

《課題》

個人差、または、随意的嚥下音運動によるばらつきが示唆されている

 

解決したい課題

これまでの嚥下音に関する研究では、個人差や個人内での筋肉の運動の差(随意的な運動)からくるデータの差などを考慮しておらず、嚥下音の波形や継続時間などには大きなばらつきが生じていた。

そのため、いかに安定性の高い嚥下音のデータを得るにはどうすれば良いのかを考えた。

アプローチ方法

データのばらつきは随意的な運動からくるものだと推定し、睡眠中の嚥下音を抽出することで不随意的嚥下運動から発生する嚥下音の抽出を行い、随意的・不随意的な嚥下音の”Ⅰ・Ⅱ・Ⅲ音の間隔”、”嚥下音の継続時間”を特徴量としてばらつきの差を調査した。

 

予備実験

《目的》

・個人差のばらつきの調査

・随意と不随意での嚥下のばらつきの調査

《実験方法》

・随意的な嚥下(仰向けの状態)と不随意的な嚥下の録音を行う

・ウェーブレット変換により周波数の平均が高い順に3箇所取り出し、Ⅰ・Ⅱ・Ⅲ音とする

嚥下音信号のウェーブレット変換

・随意的・不随意的な嚥下音の、Ⅰ・Ⅱ・Ⅲ音の間隔や継続時間の標準偏差を求め、ばらつきの差を調査する

《使用機器》

嚥下音を録音する際に、

レコーダ:V-803(下図左)

マイク:咽喉マイク(下図右)

を接続して使用した。

レコーダ、咽喉マイク

《実験条件》

 

実験条件

・個人差

複数人の場合と、個人のみの場合の随意的嚥下音のばらつきの差を求める。

・随意・不随意

個人の随意的・随意的な嚥下音のばらつきの差を求める。

結果

①被験者:複数人(14名)

嚥下:随意的

②被験者:個人

嚥下:随意的

③被験者:個人

嚥下:不随意的

○標準偏差

考察、まとめ


・嚥下障害の早期発見のために音だけの情報から嚥下機能の状態を評価する指標の提案

・嚥下音の特徴分析の予備実験より以下のことが分かった

―Ⅰ・Ⅱ・Ⅲ音の間隔や継続時間は個人差が大きい可能性

―不随意的なデータの安定性が最も高い可能性

・今後は統計的に優位な差が示せるようにデータを増やしていく

 

今後の課題、進め方進め方

・引き続き睡眠時の嚥下音を録音収集

―比較のため被験者の人数を増やす

・嚥下機能評価のための特徴量の提案

―振幅のピーク値から得た特徴量

―Ⅰ音、Ⅱ音、Ⅲ音の周波数帯域

・評価実験

―特徴量から個人の識別

劣決定条件のブラインド音源分離におけるマルチチャネル非負値行列因子分解を用いたアルゴリズムの研究

背景


私たちの生活している環境には様々な音が存在しており、その中から特定の音を抽出する技術、音源分離が求められています。

例)音声認識、雑音抑圧、ユーザによる既存音楽の再編集…etc

 

従来研究


  • マルチチャネルNMF(MNMF)

-劣決定条件(音源数>マイク数)で、マイク間の位相情報を利用して音源分離を行います。

  • 独立低ランク行列分析(ILRMA)

-優決定条件(音源数≦マイク数)で、空間モデルと音源モデルを交互に学習します。

 

目的


従来研究の2つの手法にはそれぞれ長所と短所があり、MNMF は音源数に関わらず音源分離が可能ですが、計算コストが大きく、処理が遅いという問題があります。一方、ILRMA は計算コストが少なく、処理が速いのですが、音源数とマイク数が同じでなければならないという問題があります。

そこで本研究では、MNMF と ILRMA を組み合わせて、劣決定条件(音源数>マイク数)で処理が高速なアルゴリズムの作成を提案します。

 

提案手法


本研究では、まず観測信号に対してMNMF を行い、音源をいくつかに分割します。

その後、分割した音源に対してILRMA を用いて、音源分離を行います。

 

この手法によって、従来のMNMF より少ない更新回数で分割し、ILRMA で分割した音源を分離することで、従来のMNMF より高速な音源分離ができるのではないかと考えています。

 

提案手法の有効性


提案手法の有効性を示すために2つの実験を行いました。

これを従来法と比較して、時間は短く、精度は同じになることを目指します。

実験1


実験1の条件は以下のようになっています。

この時、ID1とID2は同じ音源で、60度と120度の配置を入れ替えただけのものになります。同様にID3とID4が同じ音源となっています。

実験結果は以下のとおりです。

従来法の平均よりも提案法の平均が上回り、ID3では高い分離精度となりました。

実験2


実験2の条件は以下のようになっています。

ここで使用した音源は実験1の結果でSDRが高かったものを扱いました。また、分割した音源は正面からみて右側と左側でまとまって分割されたので、図の青の組み合わせと緑の組み合わせをID4つ分、計8個をILRMAで分離しました。

実験結果は以下のとおりです。

実行時間


 

提案法でMNMFとILRMA全てにかかった時間と、従来のMNMFのみで分離を行った時間を以下の図に示します。

考察


実験2の結果、提案法のSDRは従来法より低くなりました

→実験2のSDRの高さは実験1のSDRの高さに比例しているため、提案法のSDRの低下はMNMFの音源分割が不十分であったと考えられます。

以下の図は実験1と実験2の提案手法の結果となっています。ここで実験1で最もSDRが高くなったID3は実験2でもSDRが高くなっていることから、SDRの高さは比例していることがわかります。

まとめ


  • MNMF とILRMA を組み合わせたアルゴリズムを提案しました。
  • 従来のMNMFのみの分離に比べ、提案法の分離精度は低くなったが、実行時間は短縮できました。