音メディア処理研究室

 
ブログ

多様な雑音環境下における音声認識のための最適な雑音抑圧方法の研究

研究背景

近年音声認識技術は様々なときに、様々な場所で、様々なときに用いられています。
この技術は雑音の無い環境における音声認識の精度はとても高いのですが、雑音のある環境での音声認識はまだ十分ではありません。

従来研究

私たちの研究室では、非負値行列因子分解(以下NMFと呼びます)を用いた研究を行っています。
その中で私たちの研究室の三浦さんによる、NMFをマルチチャネル拡張したマルチチャネルNMF(以下MNMFと呼びます)を用いた雑音抑圧手法があり、その手法ではMNMFでの空間相関行列での初期値にバイナリマスクを用いた際に、ランダムに与えていた従来法よりも雑音抑圧性能が向上しているといった研究があります。
三浦さんの研究に関してはこちらをご覧ください。

研究目的

街中には様々な雑音環境があり、いかなる環境においても雑音抑圧を行えることが必要です。
現状での雑音抑圧方法のひとつに非負値行列因子分解による手法があるのですが、その技術をさらに改良して音声認識率の向上を図りたいと考えています。

提案手法

この研究の最終目標として雑音環境の音声に対して雑音環境を判断し、判断した結果を基に最適な雑音抑圧方法とNMFを組み合わせて認識率の向上を図ります。
この時環境判断に関しては、事前に雑音環境を学習させたデータをもとに雑音環境を判断し、判断した結果を基にNMF処理した音声にたいして最適な処理方法を選択します。
そして、処理した音声を音声認識させ、音声認識結果を基に良かった場合はそのまま音声出力し、悪かった場合は処理方法を変更して再び音声認識をこころみるといった物となります。

本研究では、先ほどのようなシステムを実現する前段階として、処理方法を選択する際に、どのような手法のどのようなパラメータが、環境雑音に対して適切であるかどうかを調査します。
今回は特に、NMF処理の後処理としてウィナーフィルタとウェーブレット変換を用いた際における適切なパラメータと音声認識率との関係について調査します。

認識実験

認識実験では、本研究における提案手法が有効であるかどうかの実験を行いました。
この実験において、雑音環境はCHiMEChallenge4のデータからバス、カフェ、歩行者天国、交差点の4環境を、各環境で実際に目的音を収音したREALデータと、室内で録音した目的音を各環境データに畳み込んだSIMUの2種類の8通りの環境を対象に評価を行いました。
また、雑音環境の情報を与えて環境毎に手法を変えた既知の場合と環境の情報を与えていない未知との場合に分けて実験を行いました。

認識実験結果

認識実験の結果です。
環境が未知の場合、従来のNMFのみの手法と比べて大幅に単語誤り率が大きくなっており、従来手法を越えることはできませんでした。
また、環境が既知の場合も、未知の場合と比較して多少改善されていますが、それでも従来法を超えることはできませんでした。

考察

今回の実験ではまず認識実験の前に行った予備実験にて、予備実験の環境を想定した4環境を用意し、その環境でのSDR改善量からパラメータを選択しました。しかし、認識実験に用いた環境と全く同じではないため、そのことが認識率に影響を及ぼしているのではないかと考えています。
またパラメータの選択に関してですが、今回は、雑音を混入させた音声からウィナーフィルタまたはウェーブレット変換を用いた際のSDRの改善量からパラメータの選択を行ったのですが、SDR自体が改善していても音素が変質していたなどといったことも考えられるため、事前に検討する段階から音声認識率の良し悪しでパラメータの選択を行うべきであったと考えています。
また、雑音環境が既知の場合と未知の場合とを比較して、既知の場合のほうが単語誤り率が低いことから、環境情報を与えることは必要であると考えています

まとめ

本研究では、雑音環境に頑健な抑圧方法を実現するために、従来のNMFの手法に学習を用いた雑音抑圧方法を提案しました。
その中で、特に提案システムを実現する前段階として、どのような手法のどのパラメータが環境雑音に対して適切かどうかの調査に焦点をおき、NMF処理の後処理としてウィナーフィルタとウェーブレット変換を利用した認識実験を実施しました。
その結果認識実験では、従来手法を越える結果を得ることができず、その原因として、事前に検討していたパラメータが認識実験の結果と合わなかったなどといったことが考えられます。

今後の課題

今回の研究ではウィナーフィルタとウェーブレット変換を利用しましたが、それ以外の処理方法についても検討を行う必要があるのではないかと考えています。
また、考察にもありましたが事前に検討する段階においてSDRによる評価尺度ではなく、音声認識率による評価尺度にてパラメータを調査する必要があると考えています。
また、それらを十分に行った後、今後は学習の方法について具体的に検討する必要があると考えています。

全天球型立体音響のためのマイクロホンアレイを用いた多チャネル収音の研究

研究背景・目的
近年、VR(バーチャルリアリティ:仮想現実)が身近になってきており、今後様々な業界に進出していくと考えられる。
VRはとても高い臨場感を再現しているが、さらに高い臨場感の高いものを得るには、映像による臨場感はもちろんだが、音も臨場感を出していくことが重要である。
臨場感を出すためには、音像定位(音の到来方向の再現)の再現を行っていく必要があり、本研究では、音像定位精度を高めることによって、高い臨場感を再現することを目的としている。

従来研究
環境音の収録では様々な方向を向いた場合の音を同時に収録する必要があるので、同心円状に放射状に16個のマイクを設置できる球形マイクロホンアレイを作製した。
実際に作製されたものが以下の左図、実験結果が以下の右図である。

様々な方法を提案した結果、「2ch」という方法が一番良い結果となったが、それでも0.33と低い値である。
「2ch」とは「2チャネル選択」のことで、例として正面0度方向に目的音があるときは90度方向の収録音を右のチャネルに、270度方向の収録音を左のチャネルに割り当てる方法である。

アプローチ方法
収音した音に特定方向の強調処理を行うことで、音像定位精度を上げることを考える。
システムの全体図を以下に示す。

遅延和アレイで特定方向を強調し、ウィーナーフィルタで強調した信号から背景雑音を取り除き、各方向に応じたHRTFを畳み込むことで、音像定位精度が向上するのかを検証する。

実験条件
実験条件と実験環境を以下に示す。

上図の環境で収音した音に処理を加え、HRTFを畳み込んだ音を被験者に聴いてもらい、目的音がどこから聞こえてくるかを回答してもらった。

実験結果
処理結果
強調処理と抑圧処理の実験結果を以下に示す。波形とSN比から、目的音が強調され雑音が抑圧されていることが分かる。

音像定位結果
音像定位実験結果を以下に示す。横軸が呈示角度、縦軸が回答角度、黒丸の大きさは回答者の人数を表しており、黒丸が大きいほど回答者も多いということを表している。
定位正答率を見てもらうと分かるが、従来法との間に差が現れなかった。差が現れなかった理由としては、処理した音が少し歪んでいたことが考えられる。また、他人のHRTFによる個人性の問題も挙げられる。

他人のHRTFを使用すると、前後誤りというものが生じることがある。前後誤りというのは正面0度方向から音が到来しているが、180度方向から音が到来しているかのように聞こえてしまうような前後の方向誤差のことである。
右図の提案法において、その前後誤りが多く見受けられたので、前後誤りを無いものとした結果を以下に示す。

まとめ

  • 高い臨場感の再現
  • 特定方向からの音の到来を感じさせる収音処理の提案
      ・全天球型に対応するようなマイクロホンアレイの作製
      ・遅延和アレイによる特定方向の強調
      ・ウィーナーフィルタによる周りの雑音の抑圧
  • 強調処理と抑圧処理は良い結果を得られたが、音像定位実験では従来研究と提案法では結果に差が表れなかった。しかし、前後誤りを無いものとした場合においては提案法の方が、右上がり対角線上に円が集中し、定位できていることが分かった。

今後の課題

  • 処理した音の歪みの削減
  • 動的バイノーラル信号の作成・・・スマートフォンを用いて向いた方向の音を呈示するシステムを利用して、方向誤差がどのように変化するか検証する必要がある。

Kinectを用いた音声認識機能付きジェスチャー演奏

2016年12月26日に行われた3年生デモ大会で発表した内容です。
今回のデモ大会では、音階ごとに割り当てられたジャスチャーをすることで、
あらかじめ設定しておいた楽器の音を再生し、演奏ができるアプリケーションを
発表しました。
このアプリケーションは、起動中に、再生動作の入切を制御したり、特定の楽曲に
おいてガイド機能を利用したりすることが可能です。
入切の制御やガイド機能の起動に音声認識を使用しています。

開発環境
【OS】
Microsoft Windows 7 Professional + Windows 10 Home

【ツール】
Microsoft Visual Studio Ultimate 2010 + Visual Studio Community 2015
Microsoft Kinect for Windows SDK v1.8
Microsoft DirectX SDK (June 2010)

【機材】
Microsoft Kinect for Windows v1

詳細な説明や実際の動作については以下の動画をご覧下さい。

音声付き全天球画像によるバーチャルリアリティー

2016年7月28日に行われた4年生デモ大会での発表内容です。
今回のデモではスマートフォンをHMD(ヘッドマウンドディスプレイ)にセッティングし
画面に存在する四角い物体を視線マーカーで見るとピアノを演奏することができるアプリを発表しました。
またピアノ演奏アプリの応用として全天球画像に音声を付与し視線マーカーによる選択で環境音を鳴らすアプリも同時に発表しました。

システムの流れは以下の通りです。

  • アプリ起動後HMD装着
  • 画面上に存在する四角い物体を選択するとピアノの音が鳴る
  • 左からド(赤)、レ(青)、ミ(黄色)、ファ(オレンジ)、ソ(黒)、ラ(緑)
    下に行って、シ(白)と鳴る。

開発環境

  • Windows 10
  • Visual Stadio 2015
  • Unity ver5.3.5
  • 開発言語C#

詳しい説明や実際の動作は以下の動画でご覧下さい。

https://youtu.be/LZORb61AR_Q

 

 

音声認識とフェイストラッキングを用いたアニメキャラクタへの変身

2016年7月28日に開催されたデモ大会の発表内容です

 

機能

kinectの音声認識と骨格認識を利用し、

プレイヤーの声を認識、その言葉に対応したキャラクターの顔を

画面上でプレイヤーの頭部分に貼り付けプレイヤーの動きに追従させる

詳しくは以下の動画をご覧ください

 

https://youtu.be/uqV6Yf9cPbk

 

開発ツール

・kinect

 

 

デジタル絵本用読み聞かせ音声

2016年7月28日に行われたデモ大会での発表内容です。


背景・目的

  • 小学校入学前の子どもと楽しむために絵本読み聞かせアプリケーションが複数存在する
    →ただし、ほとんどがすでに録音された音声を物語と共に再生するものである
    また、それ以外は自分の声を録音して再生するものである
  • 人工音声(または、感情音声)に関しての技術はロボットの音声、ガイド分の読み上げ等で主に使われている
  • 絵本読み聞かせに特化した音声合成ソフトは見かけない

人工音声で絵本読み聞かせのできるコンテンツを実現し、
読み聞かせの幅を広げたい

デモ内容

  • 規則音声合成ライブラリ「AquesTalk」を使用し、
    テキスト読み上げソフト「SofTalk」で録音した3種類の人工音声を比較する
    1.無修正人工音声
    2.修正人工音声①(速度:遅)
    3.修正人工音声②(速度:遅+間)
  • 文章:昔話「ももたろう」の始めの文より抜粋
    「むかしむかし、あるところにおじいさんとおばあさんがいました。
    おじいさんは山へ柴刈りに、おばあさんは川へ洗濯に行きました。」

%e7%84%a1%e4%bf%ae%e6%ad%a3%e4%ba%ba%e5%b7%a5%e9%9f%b3%e5%a3%b0

%e4%bf%ae%e6%ad%a3%e4%ba%ba%e5%b7%a5%e9%9f%b3%e5%a3%b0

%e4%bf%ae%e6%ad%a3%e4%ba%ba%e5%b7%a5%e9%9f%b3%e5%a3%b0%e2%91%a1

 

結果・考察

主観評価の結果、通常の速度より話速は遅く、句読点(、。)や文章の切れ目、「て・に・を・は」で間を入れると読み聞かせらしい音声に近づくことがわかった。

スマホを用いた仮想相対位置における音像定位システム

2016年7月28日に開催されたデモ大会の発表内容です

仮想的な音源と聴取者間の位置による音の変化を再現するシステムを作成しました。

システムの機能

  • システムを起動後 進みたい方向を向いてスマホを振るとその方向に進む
  • 画面上の音源(青色ブロック)と聴取者(赤色ブロック)の相対的な位置により音の聞こえる方向や音の大きさが変化

*画面上側を正面とします

システム構成図

fdsfasdd

デモ動画

動作は以下の動画をご覧ください。

また、3分10秒付近からは実際どのように音が変わるのかの動画を付け足していますので、

是非 ヘッドホンやイヤホンで聴いてみてください。

3分10秒以降の動画では 音源: 宝箱  キャラクター: 聴取者 となっています。

https://youtu.be/r1qwRMTBkHc

開発環境、ツールなど

 

  • Windows 7
  • Visual Stadio 2015
  • Android Studio  v 2.1.2
  • Java , C#
  • Unity v 5.3.5 (32-bit)
  • Android6.0

 

フルート演奏音の 音場シミュレーション

2016年7月28日に行われたデモ大会での発表内容です。

背景・目的
私は卒業研究でフルート音の分析・合成に取り組んでいます。
そこで、その技術の一つであるインパルス応答の畳み込みをすることで音場を再現することを目的としてデモを行いました。

デモ内容
無響室で録音したフルート音に大学構内の学生会館の部屋の特性を畳み込み、音場の再現をしました。
録音の際に、マイクの位置は息の音が入らないようにベルの前に来るように配置しました。
メーカーによる違いも調べるために2種類のフルートを用いました。

〈ヤマハYFL211S:洋銀〉
録音音源

合成後

 

〈ムラマツGXⅢ :管体銀製〉
録音音源

合成後

 

結果・考察
部屋の響き(インパルス応答)を演奏音に合成することで、その部屋で演奏したような音を再現できた。メーカーによる違いは聴くだけでは分かりにくい程度だったため、分析が必要だと感じた。

マイク間の相関を用いた音源方向の推定

2016年7月28日に行われたデモ大会の発表について紹介します。

目的・背景

マイクアレイによるフィルタ生成には音源方向が既知である必要があります。

目的音の方向を推定することが出来ればフィルタ生成における負担が減少すると考えたのでその技術について調べました。

今回は目的音方向を推定するプログラムを用いてデモを行いました。

デモ内容

マイクで集音した音から角度を推定して、スクリーンに映るトトロの顔がそちらを向くように動かすというデモになります。

システム説明

マイク二つを用いて集音し、マイク間の相関が最大となる遅延時間を求め角度を推定します。

音声データの相関の計算から角度推定までをMATLABで行い、算出した角度をテキストに保存します。

Processingでテキストを読み込み、角度に合わせて目を動かします。

集音は2秒間隔で10回繰り返した所で終了です。以下、発表の動画です。

https://www.youtube.com/watch?v=dV-wLEw0vn4

まとめ

今回は相関を用いて角度を推定するデモをおこないました。角度推定のプログラムは参考文献に記載されたものを用いています。このプログラムは単に音量で角度を推定しているので常に大きな音が集音されるとそちらの角度が出てしまいます。今後はそのような状況で推定が困難となる点を踏まえて改良したいです。

参考文献

遅延和アレーに基づく音源方向推定の研究

http://www.asp.c.dendai.ac.jp/thesis/H13_moriyama.pdf

雑音下におけるSS法を用いた音声認識ロボット

2016年7月28日に開催されたデモ大会におけるデモ内容は、以下の通りです。

・背景・目的

  • 近年では、様々な場面において音声認識技術は用いられているが、雑音環境下における音声認識に関しては研究途上の段階である。
  • 今回のデモ大会では雑音抑圧ではよく用いられているSS法を使って、雑音環境下においても音声が認識できるかどうかに関するデモを行う。

 

・デモ内容

  • まず、静かな環境でのロボットを用いた音声認識デモを行う。
  • 次に、雑音を発生させた状態にて音声認識ができるかどうかを実験する。

 

・システム構成

  • 今回のシステムでは、C#でプログラムの本体部分を作成し、雑音抑圧部分をMATLABにて関数として作成し、C#から呼び出して利用できるようにした。
  • また、音声認識に関してはJuliusを、音声合成に関してはOpenJTalkを用いた。

 

・今後の改善点

  • 他の雑音抑圧方法の機能の実装→SS法以外にも様々な方法があるので試してみたい。
  • 計算時間の短縮→プログラムに冗長なスリープなどが入っているので、できるだけ減らす。

 

・動画

    • こちらの動画が、実際に行ったデモ内容である。